统计推断(十) Elimination algorithm
消去算法
1. Elimination algorithm
主要目的是为了计算边缘分布
Reconstituted graph: 若消去的随机变量为 \(x_k\),则所有与 \(x_k\) 连接的随机变量会形成一个新的 clique
复杂度
- Brute-force marginalization:\(O\left(|\mathcal{X}|^N\right)\)
- Zig-zag elimination:\(O\left(|\mathcal{X}|^{\sqrt{N}}\right)\)
2. MAP elimination algorithm
计算 MAP \(\boldsymbol{x}^{*} \in \arg \max _{\boldsymbol{x} \in \mathcal{X}^{N}} p_{\mathbf{x}}(\boldsymbol{x})\) \[ \begin{array}{l}{\max _{x, y} f(x) g(x, y)=\max _{x}\left(f(x) \max _{y} g(x, y)\right)} \\ {\sum_{x, y} f(x) g(x, y)=\sum_{x}\left(f(x) \sum_{y} g(x, y)\right)}\end{array} \]
example \[ p_{\mathbf{x}}(\boldsymbol{x}) \propto \exp \left(x_{1} x_{2}-x_{1} x_{3}-x_{2} x_{4}+x_{3} x_{4}+x_{3} x_{5}\right) \]
algorithm
complexicity \[ \text { overall cost } \leq|\mathcal{C}| \sum_{i}|\mathcal{X}|^{\left|S_{i}\right|+1} \leq N|\mathcal{C}||\mathcal{X}|^{\max _{i}\left|S_{i}\right|+1} \]
统计推断(十) Elimination algorithm
https://glooow1024.github.io/2020/02/03/statistic/SI_Ch10_Elimination/